38,414 research outputs found

    Electric Dipole Moments in the Generic Supersymmetric Standard Model

    Get PDF
    The generic supersymmetric standard model is a model built from a supersymmetrized standard model field spectrum the gauge symmetries only. The popular minimal supersymmetric standard model differs from the generic version in having R-parity imposed by hand. We review an efficient formulation of the model and some of the recently obtained interesting phenomenological features, focusing on one-loop contributions to fermion electric dipole moments.Comment: 1+7 pages Revtex 3 figures incoporated; talk at NANP'0

    Exact asymptotics of monomer-dimer model on rectangular semi-infinite lattices

    Full text link
    By using the asymptotic theory of Pemantle and Wilson, exact asymptotic expansions of the free energy of the monomer-dimer model on rectangular n×n \times \infty lattices in terms of dimer density are obtained for small values of nn, at both high and low dimer density limits. In the high dimer density limit, the theoretical results confirm the dependence of the free energy on the parity of nn, a result obtained previously by computational methods. In the low dimer density limit, the free energy on a cylinder n×n \times \infty lattice strip has exactly the same first nn terms in the series expansion as that of infinite ×\infty \times \infty lattice.Comment: 9 pages, 6 table

    In an Attempt to Introduce Long-range Interactions into Small-world Networks

    Full text link
    Distinguishing the long-range bonds with the regular ones, the critical temperature of the spin-lattice Guassian model built on two typical Small-world Networks (SWNs) is studied. The results show much difference from the classical case, and thus may induce some more accurate discussion on the critical properties of the spin-lattice systems combined with the SWNs.Comment: 4 pages, 3 figures, 18 referenc

    Neutrino Oscillations from Supersymmetry without R-parity - Its Implications on the Flavor Structure of the Theory

    Get PDF
    We discuss here some flavor structure aspects of the complete theory of supersymmetry without R-parity addressed from the perspective of fitting neutrino oscillation data based on the recent Super-Kamiokande result. The single-VEV parametrization of supersymmetry without R-parity is first reviewed, illustrating some important features not generally appreciated. For the flavor structure discussions, a naive, flavor model independent, analysis is presented, from which a few interesting things can be learned.Comment: 1+10 pages latex, no figure; Invited talk at NANP 99 conference, Dubna (Jun 28 - Jul 3) --- submission for the proceeding

    Relativistic corrections to the Pionium Lifetime

    Get PDF
    Next to leading order contributions to the pionium lifetime are considered within non-relativistic effective field theory. A more precise determination of the coupling constants is then needed in order to be consistent with the relativistic pion-pion scattering amplitude which can be obtained from chiral perturbation theory. The relativistic correction is found to be 4.1% and corresponds simply to a more accurate value for the non-relativistic decay momentum.Comment: 5 pages, Latex. Includes corrections based on a more precise matching to the pion-pion scattering amplitude from chiral perturbation theor

    Efficient implementation of a van der Waals density functional: Application to double-wall carbon nanotubes

    Full text link
    We present an efficient implementation of the van der Waals density functional of Dion et al [Phys. Rev. Lett. 92, 246401 (2004)], which expresses the nonlocal correlation energy as a double spacial integral. We factorize the integration kernel and use fast Fourier transforms to evaluate the selfconsistent potential, total energy, and atomic forces, in N log(N) operations. The resulting overhead in total computational cost, over semilocal functionals, is very moderate for medium and large systems. We apply the method to calculate the binding energies and the barriers for relative translation and rotation in double-wall carbon nanotubes.Comment: 4 pages, 1 figure, 1 tabl

    Little Higgs Model Completed with a Chiral Fermionic Sector

    Full text link
    The implementation of the little Higgs mechanism to solve the hierarchy problem provides an interesting guiding principle to build particle physics models beyond the electroweak scale. Most model building works, however, pay not much attention to the fermionic sector. Through a case example, we illustrate how a complete and consistent fermionic sector of the TeV effective field theory may actually be largely dictated by the gauge structure of the model. The completed fermionic sector has specific flavor physics structure, and many phenomenological constraints on the model can thus be obtained beyond gauge, Higgs, and top physics. We take a first look on some of the quark sector constraints.Comment: 14 revtex pages with no figure, largely a re-written version of hep-ph/0307250 with elaboration on flavor sector FCNC constraints; accepted for publication in Phys.Rev.

    Energy Relaxation of Hot Dirac Fermions in Graphene

    Full text link
    We develop a theory for the energy relaxation of hot Dirac fermions in graphene. We obtain a generic expression for the energy relaxation rate due to electron-phonon interaction and calculate the power loss due to both optical and acoustic phonon emission as a function of electron temperature TeT_{\mathrm{e}} and density nn. We find an intrinsic power loss weakly dependent on carrier density and non-vanishing at the Dirac point n=0n = 0, originating from interband electron-optical phonon scattering by the intrinsic electrons in the graphene valence band. We obtain the total power loss per carrier 1012107W\sim 10^{-12} - 10^{-7} \mathrm{W} within the range of electron temperatures 201000K\sim 20 - 1000 \mathrm{K}. We find optical (acoustic) phonon emission to dominate the energy loss for Te>(<)200300KT_{\mathrm{e}} > (<) 200-300 \mathrm{K} in the density range n=10111013cm2n = 10^{11}-10^{13} \mathrm{cm}^{-2}.Comment: 5 page
    corecore